Welcome!

Recurring Revenue Authors: Liz McMillan, Elizabeth White, Pat Romanski, Yeshim Deniz, Zakia Bouachraoui

Related Topics: Microservices Expo, Industrial IoT

Microservices Expo: Article

The In-Memory Technologies Behind Business Intelligence Software

Understanding the in-memory technologies that are used in Business Intelligence software

If you follow trends in the business intelligence (BI) space, you'll notice that many analysts, independent bloggers and BI vendors talk about in-memory technology.

There are technical differences that separate one in-memory technology from another, some of which are listed on Boris Evelson's blog.

Some of the items on Boris' list are just as applicable to BI technologies that are not in-memory (‘Incremental updates', for example), but there is one item that merits much deeper discussion. Boris calls this characteristic ‘Memory Swapping' and describes it as, What the (BI) vendor's approach is for handling models that are larger than what fits into a single memory space.

Understanding Memory Swapping
The fundamental idea of in-memory BI technology is the ability to perform real-time calculations without having to perform slow disk operations during the execution of a query. For more details on this, visit my article describing how in-memory technology works.

Obviously, in order to perform calculations on data completely in memory, all the relevant data must reside in memory, i.e., in the computer's RAM. So the questions are: 1) how does the data get there? and 2) how long does it stay there?

These are probably the most important aspects of in-memory technology, as they have great implications on the BI solution as a whole.

Pure In-Memory Technology
Pure in-memory technologies are the class of in-memory technologies that load the entire data model into RAM before a single query can be executed by users. An example of a BI product which utilizes such a technology is QlikView.

QlikView's technology is described as "associative technology." That is a fancy way of saying that QlikView uses a simple tabular data model which is stored entirely in memory. For QlikView, much like any other pure in-memory technology, compression is very important. Compressing the data well makes it possible to hold more data inside a fixed amount of RAM

Pure in-memory technologies which do not compress the data they store in memory are usually quite useless for BI. They either handle amounts of data too small to extract interesting information from, or they break too often.

With or without compression, the fact remains that pure in-memory BI solutions become useless when RAM runs out for the entire data model, even if you're only looking to work with limited portions of it at any one time.

Just-In-Time In-Memory Technology
Just-In-Time In-Memory (or JIT In-Memory) technology only loads the portion of the data into RAM required for a particular query, on demand. An example of a BI product which utilizes this type of technology is SiSense.

Note: The term JIT is borrowed from Just-In-Time compilation, which is a method to improve the runtime performance of computer programs.

JIT in-memory technology involves a smart caching engine that loads selected data into RAM and releases it according to usage patterns.

This approach has obvious advantages:

  1. You have access to far more data than can fit in RAM at any one time
  2. It is easier to have a shared cache for multiple users
  3. It is easier to build solutions that are distributed across several machines

However, since JIT In-Memory loads data on demand, an obvious question arises: Won't the disk reads introduce unbearable performance issues?

The answer would be yes, if the data model used is tabular (as they are in RDBMSs such as SQL Server and Oracle, or pure in-memory technologies such as QlikView), but scalable JIT In-Memory solutions rely on a columnar database instead of a tabular database.

This fundamental ability of columnar databases to access only particular fields, or parts of fields, is what makes JIT In-Memory so powerful. In fact, the impact of columnar database technology on in-memory technology is so great, that many confuse the two.

The combination of JIT In-Memory technology and a columnar database structure delivers the performance of pure in-memory BI technology with the scalability of disk-based models, and is thus an ideal technological basis for large-scale and/or rapidly-growing BI data stores.


The ElastiCube Chronicles - Business Intelligence Blog

More Stories By Elad Israeli

Elad Israeli is co-founder of business intelligence software company, SiSense. SiSense has developed Prism, a next-generation business intelligence platform based on its own, unique ElastiCube BI technology. Elad is responsible for driving the vision and strategy of SiSense’s unique BI products. Before co-founding SiSense, Elad served as a Product Manager at global IT services firm Ness Technologies (NASDAQ: NSTC). Previously, Elad was a Product Manager at Anysoft and, before that, he co-founded and led technology development at BiSense, a BI technology company.

IoT & Smart Cities Stories
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settlement products to hedge funds and investment banks. After, he co-founded a revenue cycle management company where he learned about Bitcoin and eventually Ethereal. Andrew's role at ConsenSys Enterprise is a mul...
In his general session at 19th Cloud Expo, Manish Dixit, VP of Product and Engineering at Dice, discussed how Dice leverages data insights and tools to help both tech professionals and recruiters better understand how skills relate to each other and which skills are in high demand using interactive visualizations and salary indicator tools to maximize earning potential. Manish Dixit is VP of Product and Engineering at Dice. As the leader of the Product, Engineering and Data Sciences team at D...
Dynatrace is an application performance management software company with products for the information technology departments and digital business owners of medium and large businesses. Building the Future of Monitoring with Artificial Intelligence. Today we can collect lots and lots of performance data. We build beautiful dashboards and even have fancy query languages to access and transform the data. Still performance data is a secret language only a couple of people understand. The more busine...
Nicolas Fierro is CEO of MIMIR Blockchain Solutions. He is a programmer, technologist, and operations dev who has worked with Ethereum and blockchain since 2014. His knowledge in blockchain dates to when he performed dev ops services to the Ethereum Foundation as one the privileged few developers to work with the original core team in Switzerland.
Whenever a new technology hits the high points of hype, everyone starts talking about it like it will solve all their business problems. Blockchain is one of those technologies. According to Gartner's latest report on the hype cycle of emerging technologies, blockchain has just passed the peak of their hype cycle curve. If you read the news articles about it, one would think it has taken over the technology world. No disruptive technology is without its challenges and potential impediments t...
If a machine can invent, does this mean the end of the patent system as we know it? The patent system, both in the US and Europe, allows companies to protect their inventions and helps foster innovation. However, Artificial Intelligence (AI) could be set to disrupt the patent system as we know it. This talk will examine how AI may change the patent landscape in the years to come. Furthermore, ways in which companies can best protect their AI related inventions will be examined from both a US and...
Bill Schmarzo, Tech Chair of "Big Data | Analytics" of upcoming CloudEXPO | DXWorldEXPO New York (November 12-13, 2018, New York City) today announced the outline and schedule of the track. "The track has been designed in experience/degree order," said Schmarzo. "So, that folks who attend the entire track can leave the conference with some of the skills necessary to get their work done when they get back to their offices. It actually ties back to some work that I'm doing at the University of San...
When talking IoT we often focus on the devices, the sensors, the hardware itself. The new smart appliances, the new smart or self-driving cars (which are amalgamations of many ‘things'). When we are looking at the world of IoT, we should take a step back, look at the big picture. What value are these devices providing. IoT is not about the devices, its about the data consumed and generated. The devices are tools, mechanisms, conduits. This paper discusses the considerations when dealing with the...
Bill Schmarzo, author of "Big Data: Understanding How Data Powers Big Business" and "Big Data MBA: Driving Business Strategies with Data Science," is responsible for setting the strategy and defining the Big Data service offerings and capabilities for EMC Global Services Big Data Practice. As the CTO for the Big Data Practice, he is responsible for working with organizations to help them identify where and how to start their big data journeys. He's written several white papers, is an avid blogge...