Welcome!

Recurring Revenue Authors: Zakia Bouachraoui, Elizabeth White, Yeshim Deniz, Pat Romanski, Xenia von Wedel

Related Topics: Java IoT, Industrial IoT, Adobe Flex, Machine Learning , Recurring Revenue, Apache

Java IoT: Blog Feed Post

Debunking DRAM vs. Flash Controversy vis-a-vis In-Memory Processing

“Minimal” Performance Advantage of DRAM vs SSD

Wikibon produced an interesting material (looks like paid by Aerospike, NoSQL database recently emerged by resurrecting failed CitrusLeaf and acquihiring AlchemyDB, which product, of course, was recommended in the end) that compares NoSQL databases based on storing data in flash-based SSD vs. storing data in DRAM.

There are number of factual problems with that paper and I want to point them out.

Note that Wikibon doesn’t mention GridGain in this study (we are not a NoSQL datastore per-se after all) so I don’t have any bone in this game other than annoyance with biased and factually incorrect writing.

“Minimal” Performance Advantage of DRAM vs SSD
The paper starts with a simple statement “The minimal performance disadvantage of flash, relative to main memory…”. Minimal? I’ve seen number of studies where performance difference between SSDs and DRAM range form 100 to 10,000 times. For example, this University of California, Berkeley study claims that SSD bring almost no advantage to the Facebook Hadoop cluster and DRAM pre-caching is the way forward.

Let me provide even shorter explanation. Assuming we are dealing with Java – SSD devices are visible to Java application as typical block devices, and therefore accessed as such. It means that a typical object read from such device involves the same steps as reading this object from a file: hardware I/O subsystem, OS I/O subsystem, OS buffering, Java I/O subsystem & buffering, Java deserialization and induced GC. And… if you read the same object from DRAM – it involves few bytecode instructions – and that’s it.

Native C/C++ apps (like MongoDB) can take a slightly quicker route with memory mapped files (or various other IPC methods) – but the performance increase will not be significant (for obvious reason of needing to read/swap the entire pages vs. single object access pattern in DRAM).

Yet another recent technical explanation of the disadvantages of SSD storage can be found here (talking about Oracle’s “in-memory” strategy).

MongoDB, Cassandra, CouchDB DRAM-based?
Amid all the confusion on this topic it’s no wonder the author got it wrong. Neither MongoDB, Cassandra or CouchDB are in-memory systems. They are disk-based systems with support for memory caching. There’s nothing wrong with that and nothing new – every database developed in the last 25 years naturally provides in-memory caching to augment it’s main disk storage.

The fundamental difference here is that in-memory data systems like GridGain, SAP HAHA, GigaSpaces, GemFire, SqlFire, MemSQL, VoltDB, etc. use DRAM (memory) as the main storage medium and use disk for optional durability and overflow. This focus on RAM-based storage allows to completely re-optimized all main algorithms used in these systems.

For example, ACID implementation in GridGain that provides support for full-featured distributed ACID transactions beats every NoSQL database (EC-based) out there in read and even write performance: there are no single key limitations, no consistency trade offs to make, no application-side MVCC, no user-based conflict resolutions or other crutches – it just works the same way as it works in Oracle or DB2 – but faster.

2TB Cluster for $1.2M :)
If there was on piece in the original paper that was completely made up to fit the predefined narrative it was a price comparison. If the author thinks that 2TB RAM cluster costs $1.2M today – I have not one but two Golden Gate bridges to sell just for him…

Let’s see. A typical Dell/HP/IBM/Cisco blade with 256GB of DRAM will cost below $20K if you just buy on the list prices (Cisco seems to offer the best prices starting at around $15K for 256GB blades). That brings the total cost of 2TB cluster well below $200K (with all network and power equipment included and 100s TBs of disk storage).

Is this more expensive that SSD only cluster? Yes, by 2.5-3x times more expensive. But you are getting dramatic performance increase with the right software that more than justifies that price increase.

Conclusion
2-3x times price difference is nonetheless important and it provides our customers a very clear choice. If price is an issue and high performance is not – there are disk-based systems of wide varieties. If high performance and sub-second response on processing TBs of data is required – the hardware will be proportionally more expensive.

However, with 1GB of DRAM costing less than 1 USD and DRAM prices dropping 30% every 18 months – the era of disks (flash or spinning) is clearly coming to its logical end. It’s normal… it’s a progress and we all need to learn how to adapt.

Has anyone seen tape drives lately?

Read the original blog entry...

More Stories By Thomas Krafft

Over 15 years of experience in marketing and demand creation, with strategies driving over $500 million in revenue for a variety of companies in several high-growth and competitive markets, including consumer software and web services, ecommerce, demand creation through web and search, big data, and now healthcare.

IoT & Smart Cities Stories
Nicolas Fierro is CEO of MIMIR Blockchain Solutions. He is a programmer, technologist, and operations dev who has worked with Ethereum and blockchain since 2014. His knowledge in blockchain dates to when he performed dev ops services to the Ethereum Foundation as one the privileged few developers to work with the original core team in Switzerland.
Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settlement products to hedge funds and investment banks. After, he co-founded a revenue cycle management company where he learned about Bitcoin and eventually Ethereal. Andrew's role at ConsenSys Enterprise is a mul...
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
If a machine can invent, does this mean the end of the patent system as we know it? The patent system, both in the US and Europe, allows companies to protect their inventions and helps foster innovation. However, Artificial Intelligence (AI) could be set to disrupt the patent system as we know it. This talk will examine how AI may change the patent landscape in the years to come. Furthermore, ways in which companies can best protect their AI related inventions will be examined from both a US and...
In his general session at 19th Cloud Expo, Manish Dixit, VP of Product and Engineering at Dice, discussed how Dice leverages data insights and tools to help both tech professionals and recruiters better understand how skills relate to each other and which skills are in high demand using interactive visualizations and salary indicator tools to maximize earning potential. Manish Dixit is VP of Product and Engineering at Dice. As the leader of the Product, Engineering and Data Sciences team at D...
Bill Schmarzo, Tech Chair of "Big Data | Analytics" of upcoming CloudEXPO | DXWorldEXPO New York (November 12-13, 2018, New York City) today announced the outline and schedule of the track. "The track has been designed in experience/degree order," said Schmarzo. "So, that folks who attend the entire track can leave the conference with some of the skills necessary to get their work done when they get back to their offices. It actually ties back to some work that I'm doing at the University of San...
When talking IoT we often focus on the devices, the sensors, the hardware itself. The new smart appliances, the new smart or self-driving cars (which are amalgamations of many ‘things'). When we are looking at the world of IoT, we should take a step back, look at the big picture. What value are these devices providing. IoT is not about the devices, its about the data consumed and generated. The devices are tools, mechanisms, conduits. This paper discusses the considerations when dealing with the...
Bill Schmarzo, author of "Big Data: Understanding How Data Powers Big Business" and "Big Data MBA: Driving Business Strategies with Data Science," is responsible for setting the strategy and defining the Big Data service offerings and capabilities for EMC Global Services Big Data Practice. As the CTO for the Big Data Practice, he is responsible for working with organizations to help them identify where and how to start their big data journeys. He's written several white papers, is an avid blogge...
Dynatrace is an application performance management software company with products for the information technology departments and digital business owners of medium and large businesses. Building the Future of Monitoring with Artificial Intelligence. Today we can collect lots and lots of performance data. We build beautiful dashboards and even have fancy query languages to access and transform the data. Still performance data is a secret language only a couple of people understand. The more busine...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.