Welcome!

Recurring Revenue Authors: Elizabeth White, Sematext Blog, Kevin Benedict, Antonella Corno, Yeshim Deniz

Related Topics: Java IoT, Industrial IoT, Microservices Expo, Machine Learning , Recurring Revenue, Cloud Security

Java IoT: Article

Java Cryptography | Part 2

Encryption and Digital Signatures

In today's environment, information security is crucial for everyone. Security needs vary widely from protecting social security numbers to guarding corporate strategy. Information espionage can occur at all levels. A human resources employee or manager takes employee personnel files home to work on them and unfortunately loses them or they get stolen. An employee's notes to a supervisor regarding a case are intercepted and read via monitoring software by an outside hacker. The resulting damages can be costly and could be avoided by protecting assets with encryption technology.

This article demonstrates the implementation of the Cryptography header cited in the previous article and illustrates how to encrypt and digitally sign files using a hybrid combination of asymmetric public/private key encryption and symmetric encryption. A symmetric key is used to encrypt the file and the asymmetric public key encrypts the symmetric key. The asymmetric private key decrypts the symmetric key which in turn is used to decrypt the encrypted file.

Figure 1. Asymmetric Key Encryption Functions

The same pair of encryption keys can be used with digital signatures. The private key is used to sign a file and generate a digital signature. The public key is used to verify the authenticity of the signature. The encrypted symmetric key and digital signature along with additional information are stored in the Cryptography header which is affixed to the front of the encrypted file.

Figure 2. Asymmetric Key Signature Functions

The encryption technique requires the Java libraries developed by the Legion of the Bouncy Castle (www.bouncycastle.org). The Bouncy Castle jars, bcprov-jdk15on-147.jar and bcpkix-jdk15on-147.jar, contain all the methods required to encrypt, decrypt, sign and verify a digital signature. The following Java code snippet loads the BouncyCastle provider, which implements the Java Cryptography Security services such as algorithms and key generation.

import org.bouncycastle.jce.provider.*;
java.security.Security.addProvider(new BouncyCastleProvider());

Generating Public/Private Encryption Keys
A Java key store is a password protected file that contains the user's pair of asymmetric encryption keys and certificate. Each key store associates a unique alias to each pair of encryption keys it contains. The Java key store file name is generated as alias_nnnn.jks, for example, jxdoe_fc99.jks. Certificates hold the public encryption key that allows a file to be encrypted for a specific individual who holds the matching deciphering key. The following steps along with Java code snippets illustrate how to generate the pair of public/private keys and store them in a key store file, using the Bouncy Castle cryptography library.

Figure 3. Pair of Asymmetric Keys

Step 1: Create an instance of the KeyPairGenerator class specifying the RSA asymmetric algorithm and Bouncy Castle provider. Generate a 1024-bit asymmetric public and private key pair to be stored in a password protected key store file.

//-Generate the pair of Asymmetric Encryption Keys (public/private)
KeyPairGenerator tKPGen = KeyPairGenerator.getInstance("RSA", "BC");
SecureRandom tRandom = new SecureRandom();
tKPGen.initialize(1024, tRandom); //-Key size in bits
KeyPair tPair = tKPGen.generateKeyPair();
PublicKey tUserPubKey = tPair.getPublic();
PrivateKey tUserPrivKey = tPair.getPrivate();

Step 2: Extract four hex digits from the public key to create a unique alias for the filename of the certificate and key store.

KeyFactory tKeyFactory = KeyFactory.getInstance("RSA");
RSAPublicKeySpec tPubSpec =
tKeyFactory.getKeySpec(tUserPubKey, RSAPublicKeySpec.class);
String t4HexDigits = tPubSpec.getModulus().toString(16).substring(8,12);
String tUniqueAlias = "jxdoe_" + t4HexDigits;

Step 3: Create a certificate to hold the asymmetric public key that can be used to encrypt your confidential information or distributed to others for exchanging encrypted files.

JcaContentSignerBuilder tSignBldr =
new JcaContentSignerBuilder("SHA512WithRSAEncryption");
tSignBldr.setProvider("BC");
ContentSigner tSigGen = tSignBldr.build(tUserPrivKey);
X500NameBuilder tBuilder = new X500NameBuilder(BCStyle.INSTANCE);
tBuilder.addRDN(BCStyle.CN, "John X. Doe"); //-Common name
tBuilder.addRDN(BCStyle.E, "[email protected]"); //-E-mail
tBuilder.addRDN(BCStyle.L, "Detroit"); //-City/Locale
tBuilder.addRDN(BCStyle.ST, "MI"); //-State
org.bouncycastle.asn1.x500.X500Name tX500Name = tBuilder.build();
Calendar tCal = Calendar.getInstance();
tCal.set(2014, 12, 31);
java.util.Date tEnd = tCal.getTime(); //-Ending date for certificate
X509v3CertificateBuilder tV3CertGen = new JcaX509v3CertificateBuilder(
tX500Name,  //-Issuer is same as Subject
BigInteger.valueOf( System.currentTimeMillis()), //-Serial Number
new java.util.Date(), //-Date start
tEnd,     //-Date end
tX500Name,  //-Subject
tUserPubKey); //-Public RSA Key
X509CertificateHolder tCertHolder = tV3CertGen.build(tSigGen);
JcaX509CertificateConverter tConverter =
new JcaX509CertificateConverter().setProvider("BC");
X509Certificate tCert = tConverter.getCertificate(tCertHolder);

Step 4: Save the certificate to disk so that it can be used for encrypting your own personal information or distributing to others.

byte[] tBA = tCert.getEncoded();
File tFile = new File("C:\\" + tUniqueAlias + ".cer");
FileOutputStream tFOS = new FileOutputStream(tFile);
tFOS.write(tBA);
tFOS.close();

Step 5: Insert the certificate into an array of X509 certificates called a chain. Create a password protected key store file to hold the private key and certificate chain and save it to disk. The key store saves the private key and certificate chain as an entry at a unique key called the alias and is password protected as well. The same password will be used to protect the entry and key store.

KeyStore tKStore = KeyStore.getInstance("JKS", "SUN");
tKStore.load(null, null); //-Initialize KeyStore
X509Certificate[] tChain = new X509Certificate[1];
tChain[0] = tCert; //-Put certificate into a chain
tKStore.setKeyEntry(tUniqueAlias,
tUserPrivKey,
"password".toCharArray(),
tChain);
String tKSFileName = "C:\\" + tUniqueAlias + ".jks";
tFOS = new FileOutputStream(tKSFileName);
tKStore.store(tFOS, "password".toCharArray()); //-Set KeyStore password
tFOS.close();

Encryption with Digital Signature
Encryption is used to protect a file from being read by unauthorized eyes by altering its original contents to an indecipherable form. Using a hybrid encryption technique, the file is encrypted with an AES (Advanced Encryption Standard) symmetric key and the key is encrypted using RSA asymmetric encryption. In addition to protecting a file, a digital signature can be added to provide authentication of the originator who sent/encrypted the file. The digital signature is a unique number that is generated using the owner's asymmetric private key and a hash algorithm on the encrypted file contents. The following steps along with Java code snippets illustrate how to encrypt and add a digital signature to a file.

Figure 4: AES Symmetric Key

Step 1: Let's assume you want to encrypt and digitally sign the file, C:\sampleFile.txt. Dynamically generate a symmetric "secret" key using the Java class, KeyGenerator. The symmetric key will be used to encrypt the file. The Java class KeyGenerator is instantiated using the symmetric algorithm, "AES", and provider, BouncyCastle("BC"). The instance of KeyGenerator is initialized with a secure random seed and the maximum key size in bits allowed by your country. The following code illustrates how to generate a symmetric key.

KeyGenerator tKeyGen = KeyGenerator.getInstance("AES", "BC");
SecureRandom tRandom2 = new SecureRandom();
tKeyGen.init(256, tRandom2); //-256 bit AES symmetric key
SecretKey tSymmetricKey = tKeyGen.generateKey();

Step 2: Generate a Cryptography header that stores cryptographic information used to later decrypt the file and verify the digital signature. Save the symmetric algorithm, mode and padding in the header. The following code illustrates the header instantiation and initialization.

CryptoHeader tHead = new CryptoHeader();
tHead.setEncryptFlag(true);
tHead.setSignedFlag(true);
tHead.symKeyAlg(1);   //-AES
tHead.symKeyMode(5);  //-CTR Segmented Integer Counter mode
tHead.symKeyPadding(2); //-PKCS7 Padding
tHead.decryptID(tUniqueAlias); //-Owner's unique alias
tHead.decryptIDLength(tHead.decryptID().length());

Step 3: Load the owner's certificate and extract the public key. You can also load another person's certificate if you are encrypting the file for someone other than yourself. The public key will be used to encrypt the symmetric key.

InputStream tCertIS = new FileInputStream("C:\\" +tUniqueAlias+ ".cer");
CertificateFactory tFactory = CertificateFactory.getInstance("X.509","BC");
X509Certificate tCertificate =
(X509Certificate)tFactory.generateCertificate(tCertIS);
tCertIS.close();
PublicKey tPubKey = tCertificate.getPublicKey();

Step 4: Generate a Java Cipher object and initialize it using the owner's or another person's asymmetric public key extracted from the certificate and set its mode to "Cipher.WRAP_MODE". Use the Java Cipher and public key to encrypt and wrap the symmetric key. Store the wrapped encrypted key in the header and its length.

Cipher tCipherRSA = Cipher.getInstance("RSA", "BC");
tCipherRSA.init(Cipher.WRAP_MODE, (PublicKey)tPubKey);
byte[] tWrappedKey = tCipherRSA.wrap(tSymmetricKey);
tHead.wrappedSymKey(tWrappedKey);
tHead.wrappedSymKeyLength(tWrappedKey.length);

Figure 5. Wrap Symmetric Key

Step 5: Generate an initialization vector if required by the symmetric mode chosen to encrypt the file. AES is a block cipher symmetric algorithm and the Counter (CTR) mode requires an initialization vector. The AES block size is 16 bytes.

int tSize = Cipher.getInstance("AES", "BC").getBlockSize();
byte[] tInitVectorBytes = new byte[tSize];
SecureRandom tRandom3 = new SecureRandom();
tRandom3.nextBytes(tInitVectorBytes);
IvParameterSpec tIVSpec = new IvParameterSpec(tInitVectorBytes);

Figure 6. Initialization Vector

Step 6: Use the previously instantiated Cipher and set its mode to "Cipher.ENCRYPT_MODE". Use the public key to encrypt the initialization vector. Store the encrypted vector in the header along with its length.

tCipherRSA.init(Cipher.ENCRYPT_MODE, (PublicKey)tPubKey);
byte[] tInitVectorEncrypted = tCipherRSA.doFinal(tIVSpec.getIV());
tHead.initVector(tInitVectorEncrypted);
tHead.initVectorLength(tInitVectorEncrypted.length);

Figure 7. Wrap Initialization Vector

Step 7:(Optional) If you are using an enterprise CA hierarchy and encrypting for yourself, use the CA asymmetric public key stored in the key store to wrap the symmetric key and encrypt the initialization vector and store both in the header. If encrypting for another person, use the owner's asymmetric key to wrap the symmetric key and encrypt the initialization vector and store both in the header. You can store the values in the header variables, wrappedSymKeyOther and initVectorOther as well as their lengths. This provides the ability for the CA or owner to decrypt the encrypted file.

Step 8: The private key is stored in a Java key store and is password protected. Load the key store using your password. Retrieve the asymmetric private key from the key store using the same password. The asymmetric private key will be used to generate a digital signature and stored in the header.

FileInputStream tStoreFIS=new FileInputStream("C:\\"+tUniqueAlias+".jks");
KeyStore tMyKStore = KeyStore.getInstance("JKS", "SUN");
char[] tPW = "password".toCharArray();
tMyKStore.load(tStoreFIS, tPW);
PrivateKey tPrivKey = (PrivateKey)tMyKStore.getKey(tUniqueAlias, tPW);

Figure 8. Private Key

Step 9: Generate a Java Signature object specifying the signature algorithm and provider. Initialize the signature engine with the owner's asymmetric private key. The signature engine is bound to the private key so that only the public key can validate it. Store the signature algorithm in the header so that it can be verified later.

Signature tSigEngine =
Signature.getInstance("SHA512WithRSAEncryption", "BC");
tSigEngine.initSign(tPrivKey);
tHead.signatureAlg(12); //-SHA512WithRSAEncryption

Step 10: Generate a Java Cipher object based on the symmetric algorithm, mode, padding and provider which will be used to encrypt the target file. Initialize the Cipher object using the symmetric key and initialization vector and set its mode to "Cipher.ENCRYPT_MODE".

Cipher tCipherEncrypt = Cipher.getInstance("AES/CTR/PKCS7Padding", "BC");
tCipherEncrypt.init(Cipher.ENCRYPT_MODE, tSymmetricKey, tIVSpec);

Step 11: Load the file to be encrypted as a Java "FileInputStream". Encrypt the file to a temporary Java "FileOutputStream" using the Java Cipher, symmetric key and initialization vector and in parallel, sign the encrypted data with the signature engine. The stream is processed a buffer at a time till the end of the file is reached. The end result is an encrypted and digitally signed temporary file.

FileOutputStream tFileOS = new FileOutputStream("C:\\$$$$$$$$.tmp");
InputStream tFileIS = new FileInputStream("C:\\sampleFile.txt");
byte[] tInBuffer = new byte[4096];
byte[] tOutBuffer = new byte[4096];
int tNumOfBytesRead = tFileIS.read(tInBuffer);
while (tNumOfBytesRead == tInBuffer.length) {
//-Encrypt the input buffer data and store in the output buffer
int tNumOfBytesUpdated =
tCipherEncrypt.update(tInBuffer, 0, tInBuffer.length, tOutBuffer);
//-Sign the encrypted data in the output buffer
tSigEngine.update(tOutBuffer, 0, tNumOfBytesUpdated);
tFileOS.write(tOutBuffer, 0, tNumOfBytesUpdated);
tNumOfBytesRead = tFileIS.read(tInBuffer);
}
//-Process the remaining bytes in the input file.
if (tNumOfBytesRead > 0) {
tOutBuffer = tCipherEncrypt.doFinal(tInBuffer, 0, tNumOfBytesRead);
} else {
tOutBuffer = tCipherEncrypt.doFinal();
}
tSigEngine.update(tOutBuffer); //-Sign the remaining bytes
tFileOS.write(tOutBuffer, 0, tOutBuffer.length);
tFileOS.close(); //-Close the temporary file
tFileIS.close(); //-Close input file

Figure 9. Encrypt and Sign the File

The code can be made more efficient by allocating larger buffers and writing out the encrypted data after a threshold has been reached.

Step 12: Generate the digital signature from the signature engine after signing the file and store it in the header along with its length. Save the signature algorithm, signature certificate name and its length in the header.

byte[] tSignature = tSigEngine.sign();
tHead.signature(tSignature);
tHead.signatureLength(tSignature.length);
tHead.verifySigCertName(tUniqueAlias + ".cer");
tHead.verifySigCertNameLength(tHead.verifySigCertName().length());

Step 13: Calculate the total size of the header and save in the header along with its version. Write the header into a ByteArrayOutputStream, which can be converted to a byte array. The Cryptography header class contains a method to write out the header to a ByteArrayOutputStream. Write out the byte array to a file using a Java "FileOutputStream."

ByteArrayOutputStream tHeadBAOS = new ByteArrayOutputStream();
Object tRC = tHead.writeOutHeaderV4(new DataOutputStream(tHeadBAOS));
String tEncryptedFileName = "C:\\sampleFile.txt." + tUniqueAlias + ".asg";
FileOutputStream tFileOStream = new FileOutputStream(tEncryptedFileName);
byte[] tArray = tHeadBAOS.toByteArray();
tFileOStream.write(tArray, 0, tArray.length);

Step 14: Append the temporary "encrypted" file to the output stream. The end result is an encrypted file with a digital signature. Note that the file extension is "ASG" instead of "AES" to imply that it is encrypted and digitally signed. The temporary file though encrypted should be securely deleted afterwards by overwriting it.

tInStream = new FileInputStream("C:\\$$$$$$$$.tmp");
byte[] tBuffer = new byte[4096];
int tLength = tInStream.read(tBuffer);
while (tLength > 0) {
tFileOStream.write(tBuffer, 0, tLength);
tLength = tInStream.read(tBuffer);
}
tFileOStream.close();
tInstream.close();

Summary

This article demonstrates how to encrypt and digitally sign any file using Java Cryptography methods and the Cryptography libraries from Bouncy Castle organization. The Cryptography header provides information required to decipher the file and validate who encrypted its contents. The header also provides the flexibility to expand the usage of Cryptography such as allowing multiple recipients to decrypt a file by using each of their public keys to encrypt the same symmetric key. As society adopts file encryption as a standard way of protection, more creative uses will be invented by future Cyber warriors.

The source code (LaCryptoJarSample.java) is available on the Logical Answers Inc. website under the education web page as an individual file and also within the zip file, laCrypto-4.2.0.zipx.

References and Other Technical Notes
Software requirements:

  • Computer running Windows XP or higher...
  • Java Runtime (JRE V1.7 or higher)

Recommended reading:

  • "Beginning Cryptography with Java" by David Hook.
  • "The Code Book" by Simon Singh

More Stories By James H. Wong

James H. Wong has been involved in the technology field for over 30 years and has dual MS degrees in mathematics and computer science from the University of Michigan. He worked for IBM for almost 10 years designing and implementing software. Founding Logical Answers Corp in 1992, he has provided technical consulting/programming services to clients, providing their business with a competitive edge. With his partner they offer a Java developed suite of “Secure Applications” that protect client’s data using the standard RSA (asymmetric) and AES (symmetric) encryption algorithms.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
SYS-CON Events announced today that Technologic Systems Inc., an embedded systems solutions company, will exhibit at SYS-CON's @ThingsExpo, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. Technologic Systems is an embedded systems company with headquarters in Fountain Hills, Arizona. They have been in business for 32 years, helping more than 8,000 OEM customers and building over a hundred COTS products that have never been discontinued. Technologic Systems’ pr...
SYS-CON Events announced today that CA Technologies has been named “Platinum Sponsor” of SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY, and the 21st International Cloud Expo®, which will take place October 31-November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. CA Technologies helps customers succeed in a future where every business – from apparel to energy – is being rewritten by software. From ...
The taxi industry never saw Uber coming. Startups are a threat to incumbents like never before, and a major enabler for startups is that they are instantly “cloud ready.” If innovation moves at the pace of IT, then your company is in trouble. Why? Because your data center will not keep up with frenetic pace AWS, Microsoft and Google are rolling out new capabilities In his session at 20th Cloud Expo, Don Browning, VP of Cloud Architecture at Turner, will posit that disruption is inevitable for c...
SYS-CON Events announced today that Cloudistics, an on-premises cloud computing company, has been named “Bronze Sponsor” of SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. Cloudistics delivers a complete public cloud experience with composable on-premises infrastructures to medium and large enterprises. Its software-defined technology natively converges network, storage, compute, virtualization, and management into a ...
Keeping pace with advancements in software delivery processes and tooling is taxing even for the most proficient organizations. Point tools, platforms, open source and the increasing adoption of private and public cloud services requires strong engineering rigor - all in the face of developer demands to use the tools of choice. As Agile has settled in as a mainstream practice, now DevOps has emerged as the next wave to improve software delivery speed and output. To make DevOps work, organization...
SYS-CON Events announced today that Loom Systems will exhibit at SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. Founded in 2015, Loom Systems delivers an advanced AI solution to predict and prevent problems in the digital business. Loom stands alone in the industry as an AI analysis platform requiring no prior math knowledge from operators, leveraging the existing staff to succeed in the digital era. With offices in S...
The explosion of new web/cloud/IoT-based applications and the data they generate are transforming our world right before our eyes. In this rush to adopt these new technologies, organizations are often ignoring fundamental questions concerning who owns the data and failing to ask for permission to conduct invasive surveillance of their customers. Organizations that are not transparent about how their systems gather data telemetry without offering shared data ownership risk product rejection, regu...
SYS-CON Events announced today that Interoute, owner-operator of one of Europe's largest networks and a global cloud services platform, has been named “Bronze Sponsor” of SYS-CON's 20th Cloud Expo, which will take place on June 6-8, 2017 at the Javits Center in New York, New York. Interoute is the owner-operator of one of Europe's largest networks and a global cloud services platform which encompasses 12 data centers, 14 virtual data centers and 31 colocation centers, with connections to 195 add...
SYS-CON Events announced today that SoftLayer, an IBM Company, has been named “Gold Sponsor” of SYS-CON's 18th Cloud Expo, which will take place on June 7-9, 2016, at the Javits Center in New York, New York. SoftLayer, an IBM Company, provides cloud infrastructure as a service from a growing number of data centers and network points of presence around the world. SoftLayer’s customers range from Web startups to global enterprises.
SYS-CON Events announced today that CrowdReviews.com has been named “Media Sponsor” of SYS-CON's 20th International Cloud Expo, which will take place on June 6–8, 2017, at the Javits Center in New York City, NY. CrowdReviews.com is a transparent online platform for determining which products and services are the best based on the opinion of the crowd. The crowd consists of Internet users that have experienced products and services first-hand and have an interest in letting other potential buyers...
SYS-CON Events announced today that T-Mobile will exhibit at SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. As America's Un-carrier, T-Mobile US, Inc., is redefining the way consumers and businesses buy wireless services through leading product and service innovation. The Company's advanced nationwide 4G LTE network delivers outstanding wireless experiences to 67.4 million customers who are unwilling to compromise on ...
SYS-CON Events announced today that Infranics will exhibit at SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. Since 2000, Infranics has developed SysMaster Suite, which is required for the stable and efficient management of ICT infrastructure. The ICT management solution developed and provided by Infranics continues to add intelligence to the ICT infrastructure through the IMC (Infra Management Cycle) based on mathemat...
SYS-CON Events announced today that SD Times | BZ Media has been named “Media Sponsor” of SYS-CON's 20th International Cloud Expo, which will take place on June 6–8, 2017, at the Javits Center in New York City, NY. BZ Media LLC is a high-tech media company that produces technical conferences and expositions, and publishes a magazine, newsletters and websites in the software development, SharePoint, mobile development and commercial UAV markets.
SYS-CON Events announced today that Telecom Reseller has been named “Media Sponsor” of SYS-CON's 20th International Cloud Expo, which will take place on June 6–8, 2017, at the Javits Center in New York City, NY. Telecom Reseller reports on Unified Communications, UCaaS, BPaaS for enterprise and SMBs. They report extensively on both customer premises based solutions such as IP-PBX as well as cloud based and hosted platforms.
"I think that everyone recognizes that for IoT to really realize its full potential and value that it is about creating ecosystems and marketplaces and that no single vendor is able to support what is required," explained Esmeralda Swartz, VP, Marketing Enterprise and Cloud at Ericsson, in this SYS-CON.tv interview at @ThingsExpo, held June 7-9, 2016, at the Javits Center in New York City, NY.
In his keynote at @ThingsExpo, Chris Matthieu, Director of IoT Engineering at Citrix and co-founder and CTO of Octoblu, focused on building an IoT platform and company. He provided a behind-the-scenes look at Octoblu’s platform, business, and pivots along the way (including the Citrix acquisition of Octoblu).
SYS-CON Events announced today that HTBase will exhibit at SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. HTBase (Gartner 2016 Cool Vendor) delivers a Composable IT infrastructure solution architected for agility and increased efficiency. It turns compute, storage, and fabric into fluid pools of resources that are easily composed and re-composed to meet each application’s needs. With HTBase, companies can quickly prov...
Web Real-Time Communication APIs have quickly revolutionized what browsers are capable of. In addition to video and audio streams, we can now bi-directionally send arbitrary data over WebRTC's PeerConnection Data Channels. With the advent of Progressive Web Apps and new hardware APIs such as WebBluetooh and WebUSB, we can finally enable users to stitch together the Internet of Things directly from their browsers while communicating privately and securely in a decentralized way.
DevOps is often described as a combination of technology and culture. Without both, DevOps isn't complete. However, applying the culture to outdated technology is a recipe for disaster; as response times grow and connections between teams are delayed by technology, the culture will die. A Nutanix Enterprise Cloud has many benefits that provide the needed base for a true DevOps paradigm.
What sort of WebRTC based applications can we expect to see over the next year and beyond? One way to predict development trends is to see what sorts of applications startups are building. In his session at @ThingsExpo, Arin Sime, founder of WebRTC.ventures, will discuss the current and likely future trends in WebRTC application development based on real requests for custom applications from real customers, as well as other public sources of information,