Welcome!

Recurring Revenue Authors: Pat Romanski, Elizabeth White, Yeshim Deniz, Liz McMillan, Xenia von Wedel

Blog Feed Post

Can RAID extend the life of nand flash SSD?

Can RAID extend the life of nand flash SSD?

By Greg Schulz

Storage I/O trends

Can RAID extend nand flash SSD life?

Imho, the short answer is YES, under some circumstances.

There is a myth and some FUD that RAID (Redundant Array of Independent Disks) can shorten the life durability of nand flash SSD (Solid State Device) vs. HDD (Hard Disk Drives) due to extra IOP's. The reality is that depending on how configured, RAID level, implementation and other factors, nand flash SSD can be extended as I discuss in this here video.

Video

Nand flash SSD cells and wear

First, there is a myth that nand flash SSD does not have moving parts like hard disk drives (HDD's) thus do not wear out or break. That is just a myth in that nand flash by its nature wears out with write usage. This is due to how they store data in cells that have a rated number of program erase (P/E) cycles that vary by type of medium. For example, Single Level Cell (SLC) has a longer P/E life duration vs. Multi-Level Cells (MLC) and eMLC that stack multiple cells together.

There are a number of factors that contribute to nand flash wear, also known as duty cycle or durability tied to P/E. For example, some storage systems or controllers do a better job both at the lower level flash translation layer (FTL) in addition to controllers, firmware, caching using DRAM and IO optimization such as write ordering or grouping.

Now what about this RAID and SSD thing?

Ok first as a recap keep in mind that there are many RAID levels along with variations, enhancements and where, or how implemented ranging from software to hardware, adapters to controllers to storage systems.

In the case of RAID 1 or mirroring, just like replication or other one to one or one too many copy operation a write to one device is echoed to another. In the case of RAID 5, data is spread across drives and parity; however, the parity is rotated across all drives in an equal manner.

Some FUD or myths or misunderstandings come into play is that not all RAID 5 implementations as an example are not the same. Some do a better job of buffering or caching data in battery protected mirrored DRAM memory until a full stripe write can occur, or if needed, a partial write.

Another attribute is the chunk or shard size (how much data is sent to each drive member) along with the stripe width (how many drives). Some systems have narrow stripes of say 3+1 or 4+1 or 5+1 while others can be 14+1 or 15+1 or wider. Thus, data can be written across a wider number of drives reducing the P/E consumption or use of a single drive depending on implementation.

How about RAID 6 (dual parity)?

Same thing, it is a matter of how well the implementation is, how the write gathering is done and so forth.

What about RAID wearing out nand flash SSD?

While it is possible that it has or can occur depending on type of RAID implementation, lack of caching or optimization, configuration, type of SSD, RAID level and other things, in general I will say myth busted.

Want some proof?

I could go through a long technical proof point and citing lots of facts, figures, experts and so forth leaving you all silenced and dazed similar to the students listening to Ben Stein in Ferris Buelers day off (Click here to see what I mean) asking “anybody anybody Buleler?

Ben Stein via <a href=http://nostagjicmoviesandthings.blogspot.com " width="320" height="180" border="0" />
Image via nostagjicmoviesandthings.blogspot.com

How about some simple SSD and storage math?

On a very conservative basis, my estimate is that around 250PB of nand flash SSD drives are shipped and installed on a revenue basis attached to or in storage systems and appliances. Combine what Dell + DotHill + EMC + Fujitsu + HDS + HP + IBM (including TMS) + NEC + NetApp + NEC + Oracle among other legacy along with new all flash as well as hybrid vendors (e.g. Cloudbyte, FusionIO (Via their Nexgen acquisition), Kaminario, Greenbytes, Nutanix or Nimble, Purestorage, Starboard or Solidfire, Tegile or Tintri, Violin or Whiptail among others).

It is also a safe assumption based on how customers configure and use those and other storage systems is with some form of RAID. Thus if things were as bad as some researchers were, vendors and their pundits have made them out to be, wouldn't’t we be hearing of those issues?

Is it just a RAID 5 problem and that RAID 6 magically corrects the problem?

Well, that depends on apples to apples vs. apples to oranges comparisons.

For example if you are using a 14+2 (16 drive) RAID 6 to compare to say a 3+1 (4 drive) RAID 5 that is not a fair comparison. Granted, it is a handy one if you are a vendor that supports wider RAID groups, stripes and ranks vs. those who do not. However also keep in mind that some legacy vendors actually also support wide stripes and RAID groups.

So in some cases the magic is not in the RAID level, rather the implementation or how configured or lack thereof.

Video

Watch this TechTarget produced video recorded live while I was at EMCworld 2013 to learn more.

Otherwise, ok, nuff said (for now).

Cheers
Gs

Greg Schulz - Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2013 StorageIO All Rights Reserved

Read the original blog entry...

More Stories By Greg Schulz

Greg Schulz is founder of the Server and StorageIO (StorageIO) Group, an IT industry analyst and consultancy firm. Greg has worked with various server operating systems along with storage and networking software tools, hardware and services. Greg has worked as a programmer, systems administrator, disaster recovery consultant, and storage and capacity planner for various IT organizations. He has worked for various vendors before joining an industry analyst firm and later forming StorageIO.

In addition to his analyst and consulting research duties, Schulz has published over a thousand articles, tips, reports and white papers and is a sought after popular speaker at events around the world. Greg is also author of the books Resilient Storage Network (Elsevier) and The Green and Virtual Data Center (CRC). His blog is at www.storageioblog.com and he can also be found on twitter @storageio.

IoT & Smart Cities Stories
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
Machine learning has taken residence at our cities' cores and now we can finally have "smart cities." Cities are a collection of buildings made to provide the structure and safety necessary for people to function, create and survive. Buildings are a pool of ever-changing performance data from large automated systems such as heating and cooling to the people that live and work within them. Through machine learning, buildings can optimize performance, reduce costs, and improve occupant comfort by ...
The explosion of new web/cloud/IoT-based applications and the data they generate are transforming our world right before our eyes. In this rush to adopt these new technologies, organizations are often ignoring fundamental questions concerning who owns the data and failing to ask for permission to conduct invasive surveillance of their customers. Organizations that are not transparent about how their systems gather data telemetry without offering shared data ownership risk product rejection, regu...
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
Predicting the future has never been more challenging - not because of the lack of data but because of the flood of ungoverned and risk laden information. Microsoft states that 2.5 exabytes of data are created every day. Expectations and reliance on data are being pushed to the limits, as demands around hybrid options continue to grow.
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to ...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
As IoT continues to increase momentum, so does the associated risk. Secure Device Lifecycle Management (DLM) is ranked as one of the most important technology areas of IoT. Driving this trend is the realization that secure support for IoT devices provides companies the ability to deliver high-quality, reliable, secure offerings faster, create new revenue streams, and reduce support costs, all while building a competitive advantage in their markets. In this session, we will use customer use cases...