Welcome!

Recurring Revenue Authors: Kevin Jackson, Liz McMillan, Yeshim Deniz, Carmen Gonzalez, Elizabeth White

Related Topics: @DXWorldExpo, Recurring Revenue, @CloudExpo, Apache, SDN Journal

@DXWorldExpo: Blog Post

MySQL and Oracle into Hadoop By @Continuent | @CloudExpo [#BigData]

Underlying all the decisions of what part of Hadoop will use the data is how the data is stored

Replicating from MySQL and Oracle into Hadoop

The notion of a database silo - that is, a single database that contains everything and operates in isolation - is a rapidly fading concept in most companies. Many use multiple databases to take advantage of the different range of functionality, from their transactional store, to caching and session stores using NoSQL and, more recently, the transfer of information into analytical stores such as Hadoop.

This raises a problem when it comes to moving the data about. There are many different solutions available if all you want to do is move some data between systems through import and export. These are clumsy solutions, they can be scripted, but more usually you want to provide a regular stream of changes into Hadoop so that you can process and analyze the data as quickly as possible. In this article, we'll examine the traditional dump and load solutions and look at a solution that enables real-time replication of data from MySQL and Oracle into Hadoop.

Hadoop Imports
Ignoring just for the moment where the data will come from, before we start doing any kind of import into Hadoop you need to think about how the data will be used and accessed on the Hadoop side. The temptation is to ignore the destination format and information, but this can lead to long-term problems in terms of understanding the data and processing it effectively.

Underlying all the decisions of what part of Hadoop will use the data is how the data is stored. Within Hadoop, data is written into the HDFS file system. HDFS stores data across your Hadoop cluster by first dividing up the file by the configured block size, and second by providing replicas of these blocks across the cluster. These replicas serve two purposes:

  • They enable faster and more easily distributed processing. With multiple copies, there are multiple nodes that can process the local copy of the data without having to copy it around the cluster at the time of processing.
  • They provide high availability, by allowing a single node in the cluster to fail without you losing access to the data it stores.

Ultimately this leads to the first key parameter for data loading into Hadoop - larger files are better. The larger the file, the more blocks it will be divided into, the more it will be distributed. Ergo, the faster it will be to process across the cluster as multiple nodes are able to work on each block individually.

When it comes to the actual file format, in most cases, Hadoop is designed to work with fairly basic textual data. Rather than the complicated binary formats that traditional databases use, Hadoop is just as happy to process CSV or JSON-based information.

One of the many benefits of Hadoop and the HDFS system is that the distributed nature makes it easy to parse and understand a variety of formats. In general, you are better off writing to a simpler format, such as CSV, that can then be parsed and used by multiple higher-level interfaces, like Hive or Impala. This sounds counter-intuitive, but native binary representations when processed in a distributed fashion often complicate the process of ingesting the data.

So with that in mind, we can generate some simple data to be loaded into Hadoop from our traditional database environment by generating a simple CSV file.

Simple Export
There are many different ways in which you can generate CSV files in both Oracle and MySQL. In both solutions you can normally do a dump of the information from a table, or from the output of a query, into a CSV file.

For example, with MySQL you can use the SELECT INTO SQL statement:

mysql> SELECT title, subtitle, servings, description into OUTFILE  'data.csv' FIELDS TERMINATED BY ',' FROM recipes t;

Within Oracle, use the SPOOL method within sqlplus, or manually combine the columns together. Alternatively, there are numerous solutions and tools for reading SQL data and generating CSV.

Once you've generated the file, the easiest way to get the data into HDFS is to copy the information from the generated file into HDFS using the hadoop command-line tool.

For example:

$ hadoop fs -copyFromLocal data.csv /user/

The problem with this approach is what do you do the next time you want to export the data? Do you export the whole batch, or just the changed records? And how do you identify the changed information, and more importantly merge that back once it's in HDFS. More importantly, all you have is the raw data; to use it, for example, within Hive and perform queries on the information, requires manually generating the DDL. Let's try a different tool, Sqoop.

Using Sqoop
Sqoop is a standard part of Hadoop and uses JDBC to access remote databases of a variety of types and then transfers the information across into Hadoop. The way it does this is actually not vastly different from the manual export process provided above; it runs the equivalent of a 'SELECT * FROM TABLE' and then writes the generated information into HDFS for you.

There are some differences. For one, Sqoop will do this in parallel for you. For example, if you have 20 nodes in your Hadoop cluster, Sqoop will fire up 20 processes that first identify and split up the extraction, and then give each node the range of records to be extracted. When moving millions of rows of data, it is obviously more efficient to be doing this in parallel, providing your server is capable of handling the load.

Using Sqoop is simple, you supply the JDBC connectivity information while logged in to your Hadoop cluster, and effectively suck the data across:

$ sqoop import-all-tables --connect jdbc:mysql://192.168.0.240/cheffy
\-username=cheffy

This process will create a file within HDFS with the extracted data:

$ hadoop fs -ls access_log
Found 6 items
-rw-r--r--   3 cloudera cloudera          0 2013-08-15 09:37 access_log/_SUCCESS
drwxr-xr-x   - cloudera cloudera          0 2013-08-15 09:37 access_log/_logs
-rw-r--r--   3 cloudera cloudera   36313694 2013-08-15 09:37 access_log/part-m-00000
-rw-r--r--   3 cloudera cloudera   36442312 2013-08-15 09:37 access_log/part-m-00001
-rw-r--r--   3 cloudera cloudera   36797470 2013-08-15 09:37 access_log/part-m-00002
-rw-r--r--   3 cloudera cloudera   36321038 2013-08-15 09:37 access_log/part-m-00003

Sqoop itself is quite flexible, for example you can read data from a variety of sources, and write that out to files in various formats, including generating DDL for use within Hive.

Sqoop also supports incremental loads; this is achieved by either using a known auto-incrementing ID that can be used as the change identifier, or by changing your DDL to provide a date time or other column to help identify the last export and new data. For example, using an auto-increment:

$ sqoop import --connect jdbc:mysql://192.168.0.240/hadoop --username root \
--table chicago --check-column id --incremental append --last-value=2168224

The problem with Sqoop is that not everybody wants to change their DDL or auto-increment data. Meanwhile, the problem with both manual and Sqoop based exports is that performing a query, even a limiting one, has the effect of removing data from your memory cache, which may ultimately affect the performance of the application running on the source database. This is not a situation you want.

Furthermore, automating the process, either with direct imports or Sqoop is not as straightforward as it seems either.

Real-Time Replication
A better solution is to replicate the information in real-time using a tool such as Tungsten Replicator. There are methods built into both MySQL and Oracle for effectively extracting the data:

  • MySQL provides the binary log, which contains a simple sequential list of all the changes to the database. These can be statement based or row based, or a mixture.
  • Oracle provides multiple tools, but Tungsten Replicator is designed to work the Change Data Capture (CDC) system to extract row-based information from the database changes.

By reading the row-based changes out of the source database, Tungsten Replicator can formulate this information into CSV. A simple diagram explains the basic process.

This effectively replaces both the manual and Sqoop-based processes with an automated, and constant, stream of data from the source database into Hadoop using HDFS. The exact sequence is:

  • Data is read from the source database, using the binary log or CDC information. This data is already in row format and each table should have a primary key.
  • The row-based changes are stored within the THL format, which consists of the raw ROW data and metadata, such as the column names, primary key and indexing information, and any reformatting required, such as changing the ENUM or SET data types into equivalent strings. THL also associates a unique transaction ID with each block of committed data.
  • The THL data is transferred over to the slave replicator, which is running within the Hadoop cluster.
  • The slave replicator generates a CSV file per table containing a configurable number of rows or within a specific time limit, providing a regular stream of data. The CSV data itself consists of an operation type (insert, or delete, with updates represented as a delete of the original data and an insert of the new data), the sequence number, the primary key information, and the raw row data itself. The reason for this format is how it is used on the other side.
  • The CSV is then copied into the HDFS file system.

This actually only gets the raw change information from the source database and out into HDFS.

This is an important distinction from the manual export and Sqoop processes; Tungsten Replicator effectively stores a CSV version of the change log information.

To turn that change data into we need to materialize the change data into a table that looks like the original table from where the data was generated. The materialization process is actually very simple; within Hadoop we can write a map-reduce script that does the following:

  • Orders all the changes by primary key and transaction ID
  • Ignores any row that is a delete
  • Generates a row for each row marked as an insert, picking the 'last' row (by transaction id) from the list of available rows


This is perhaps clearer in the diagram below, where the change log on the left is translated into the two rows of actual data on the right.

The materialization process needs to be run on every table, and because of the way it works with relation to the idempotency of the primary key information for each row, it can be used both to merge with the current dataset, with data that has previously been provisioned by a using the manual process or Sqoop, and previous executions of the tool on the data. Once the changes have been migrated, the actual change data can be removed.

Using the Change Data
Since you've moved the change data over, another option, rather than generating carbon copy tables, is to actually use the change data. You can, for example, process the information and look at the same transaction data over time or provide a sample of what your data looked like at a specific time. For example, in a sales environment, you might use this to examine the cost and relative sales for products over time when their prices changed.

Summary
There are many solutions available for moving data, and indeed getting data into Hadoop is altogether complicated, but there are benefits and pitfalls to the solutions available. Both manual and Sqoop-based solutions tend to be network and resource heavy, and designed to duplicate data from one side to the other.

The right solution needs to provide the ability to analyze the transactional data in a completely different fashion that may provide additional depth and breadth from your existing transactional data store.

 

Manual via CSV

Sqoop

Tungsten Replicator

Process

Manual/Scripted

Manual/Scripted

Fully automated

Incremental Loading

Possible with DDL changes

Requires DDL changes

Fully supported

Latency

Full-load

Intermittent

Real-time

Extraction Requirements

Full table scan

Full and partial table scans

Low-impact binlog scan

More Stories By MC Brown

MC Brown is director of product management at Continuent, a leading provider of database clustering and replication, enabling enterprises to run business-critical applications on cost-effective open source software. To learn more, contact Continuent at [email protected] or visit http://www.continuent.com.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
Digital Transformation (DX) is not a "one-size-fits all" strategy. Each organization needs to develop its own unique, long-term DX plan. It must do so by realizing that we now live in a data-driven age, and that technologies such as Cloud Computing, Big Data, the IoT, Cognitive Computing, and Blockchain are only tools. In her general session at 21st Cloud Expo, Rebecca Wanta explained how the strategy must focus on DX and include a commitment from top management to create great IT jobs, monitor ...
In his Opening Keynote at 21st Cloud Expo, John Considine, General Manager of IBM Cloud Infrastructure, led attendees through the exciting evolution of the cloud. He looked at this major disruption from the perspective of technology, business models, and what this means for enterprises of all sizes. John Considine is General Manager of Cloud Infrastructure Services at IBM. In that role he is responsible for leading IBM’s public cloud infrastructure including strategy, development, and offering m...
Recently, WebRTC has a lot of eyes from market. The use cases of WebRTC are expanding - video chat, online education, online health care etc. Not only for human-to-human communication, but also IoT use cases such as machine to human use cases can be seen recently. One of the typical use-case is remote camera monitoring. With WebRTC, people can have interoperability and flexibility for deploying monitoring service. However, the benefit of WebRTC for IoT is not only its convenience and interopera...
No hype cycles or predictions of a gazillion things here. IoT is here. You get it. You know your business and have great ideas for a business transformation strategy. What comes next? Time to make it happen. In his session at @ThingsExpo, Jay Mason, an Associate Partner of Analytics, IoT & Cybersecurity at M&S Consulting, presented a step-by-step plan to develop your technology implementation strategy. He also discussed the evaluation of communication standards and IoT messaging protocols, data...
Product connectivity goes hand and hand these days with increased use of personal data. New IoT devices are becoming more personalized than ever before. In his session at 22nd Cloud Expo | DXWorld Expo, Nicolas Fierro, CEO of MIMIR Blockchain Solutions, will discuss how in order to protect your data and privacy, IoT applications need to embrace Blockchain technology for a new level of product security never before seen - or needed.
Recently, REAN Cloud built a digital concierge for a North Carolina hospital that had observed that most patient call button questions were repetitive. In addition, the paper-based process used to measure patient health metrics was laborious, not in real-time and sometimes error-prone. In their session at 21st Cloud Expo, Sean Finnerty, Executive Director, Practice Lead, Health Care & Life Science at REAN Cloud, and Dr. S.P.T. Krishnan, Principal Architect at REAN Cloud, discussed how they built...
Nordstrom is transforming the way that they do business and the cloud is the key to enabling speed and hyper personalized customer experiences. In his session at 21st Cloud Expo, Ken Schow, VP of Engineering at Nordstrom, discussed some of the key learnings and common pitfalls of large enterprises moving to the cloud. This includes strategies around choosing a cloud provider(s), architecture, and lessons learned. In addition, he covered some of the best practices for structured team migration an...
SYS-CON Events announced today that Synametrics Technologies will exhibit at SYS-CON's 22nd International Cloud Expo®, which will take place on June 5-7, 2018, at the Javits Center in New York, NY. Synametrics Technologies is a privately held company based in Plainsboro, New Jersey that has been providing solutions for the developer community since 1997. Based on the success of its initial product offerings such as WinSQL, Xeams, SynaMan and Syncrify, Synametrics continues to create and hone inn...
The 22nd International Cloud Expo | 1st DXWorld Expo has announced that its Call for Papers is open. Cloud Expo | DXWorld Expo, to be held June 5-7, 2018, at the Javits Center in New York, NY, brings together Cloud Computing, Digital Transformation, Big Data, Internet of Things, DevOps, Machine Learning and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding busin...
"Digital transformation - what we knew about it in the past has been redefined. Automation is going to play such a huge role in that because the culture, the technology, and the business operations are being shifted now," stated Brian Boeggeman, VP of Alliances & Partnerships at Ayehu, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
In his session at 21st Cloud Expo, Raju Shreewastava, founder of Big Data Trunk, provided a fun and simple way to introduce Machine Leaning to anyone and everyone. He solved a machine learning problem and demonstrated an easy way to be able to do machine learning without even coding. Raju Shreewastava is the founder of Big Data Trunk (www.BigDataTrunk.com), a Big Data Training and consulting firm with offices in the United States. He previously led the data warehouse/business intelligence and B...
Cloud Expo | DXWorld Expo have announced the conference tracks for Cloud Expo 2018. Cloud Expo will be held June 5-7, 2018, at the Javits Center in New York City, and November 6-8, 2018, at the Santa Clara Convention Center, Santa Clara, CA. Digital Transformation (DX) is a major focus with the introduction of DX Expo within the program. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive ov...
A strange thing is happening along the way to the Internet of Things, namely far too many devices to work with and manage. It has become clear that we'll need much higher efficiency user experiences that can allow us to more easily and scalably work with the thousands of devices that will soon be in each of our lives. Enter the conversational interface revolution, combining bots we can literally talk with, gesture to, and even direct with our thoughts, with embedded artificial intelligence, whic...
Smart cities have the potential to change our lives at so many levels for citizens: less pollution, reduced parking obstacles, better health, education and more energy savings. Real-time data streaming and the Internet of Things (IoT) possess the power to turn this vision into a reality. However, most organizations today are building their data infrastructure to focus solely on addressing immediate business needs vs. a platform capable of quickly adapting emerging technologies to address future ...
With tough new regulations coming to Europe on data privacy in May 2018, Calligo will explain why in reality the effect is global and transforms how you consider critical data. EU GDPR fundamentally rewrites the rules for cloud, Big Data and IoT. In his session at 21st Cloud Expo, Adam Ryan, Vice President and General Manager EMEA at Calligo, examined the regulations and provided insight on how it affects technology, challenges the established rules and will usher in new levels of diligence arou...
SYS-CON Events announced today that Evatronix will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Evatronix SA offers comprehensive solutions in the design and implementation of electronic systems, in CAD / CAM deployment, and also is a designer and manufacturer of advanced 3D scanners for professional applications.
To get the most out of their data, successful companies are not focusing on queries and data lakes, they are actively integrating analytics into their operations with a data-first application development approach. Real-time adjustments to improve revenues, reduce costs, or mitigate risk rely on applications that minimize latency on a variety of data sources. In his session at @BigDataExpo, Jack Norris, Senior Vice President, Data and Applications at MapR Technologies, reviewed best practices to ...
"Evatronix provides design services to companies that need to integrate the IoT technology in their products but they don't necessarily have the expertise, knowledge and design team to do so," explained Adam Morawiec, VP of Business Development at Evatronix, in this SYS-CON.tv interview at @ThingsExpo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
22nd International Cloud Expo, taking place June 5-7, 2018, at the Javits Center in New York City, NY, and co-located with the 1st DXWorld Expo will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud ...
22nd International Cloud Expo, taking place June 5-7, 2018, at the Javits Center in New York City, NY, and co-located with the 1st DXWorld Expo will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud ...