Recurring Revenue Authors: Yeshim Deniz, Liz McMillan, Xenia von Wedel, Carmen Gonzalez, Elizabeth White

Related Topics: @DXWorldExpo, Java IoT, @CloudExpo

@DXWorldExpo: Article

Data Lake Plumbers | @BigDataExpo @Schmarzo #BigData #IoT #AI #ML #DL

The data lake is ideal for your data science team as it liberates them from the constraints & limitations of the data warehouse

Many of my blogs promote the business benefits of the data lake, both from a “save me more money” as well as the “make me more money” perspectives. But I fear that I’m making this thing called the data lake sound like a “silver bullet" [1] – just drop the data into the data lake and everything magically works. But much like in the world of data warehousing, there is significant work that needs to be done under the covers – in areas such as metadata management, data governance and security – to ensure that the data lake will perform for a business in a production environment. Many of the processes and techniques we learned in the data warehouse will benefit us here, though there are many new tools to be aware of that can help us in the operationalization task.

I’ve asked an industry expert in metadata management and data governance, Joe DosSantos (follow Joe on twitter: @JoeDosSantos) to co-author this blog with me. Well, to be honest, this mostly reflects Joe’s experience and thinking; I just wanted to get credit for being smart enough to know when to bring someone smarter than me into the conversation!

Data Lake Benefits
You know from previous blogs that there are many benefits to the data lake including:

  • Capture data from wide range of traditional (operational, transactional) and new sources (structured and unstructured) as-is
  • Store all your data in one environment for cross-functional business analysis
  • Support the analytics and data science to uncover new customer, product, and operational insights
  • Empower front-line employees and managers, and drive a more profitable customer engagement leveraging customer, product and operational insights
  • Integrate analytic insights into operational (Finance, Manufacturing, Marketing, Sales Force, Procurement, Logistics) and management systems (Business Intelligence reports and dashboards)

The data lake is ideal for your data science team in that it liberates them from the constraints and limitations of the data warehouse, enabling the data science team to quickly ingest, test and determine if there is any value to different data sets and analytic techniques without having to go through the rigorous operational procedures that govern the data warehouse.

However, this liberty can be quite terrifying in highly regulated environments. Companies have spent years developing governance and stewardship organizations specifically to control patient information, personal contact information, account balances, and other sensitive information. The description above seems to undo all of this work by creating free and easy access to data that should be locked down.

This is why the controls of a data lake need to be very clear. Data that is onboarded into a lake must go through a rigorous set of operational procedures to manage and govern that data set to make sure that it is appropriately tagged and protected, and then provisioned only to people who have the proper authorization. Modern data tools allow for this kind of governance capability to balance the quick and easy access to data that a data scientist needs with the security that good practices (and often the government) demand.

Operationalizing the Data Lake
Operationalizing the data lake requires several non-obvious disciplines, many of which we learned from our data warehouse experiences. These disciplines include data ingestion, indexing, cataloging, metadata management, data governance and security [2].

  1. As with a data warehouse, you will need a method to bring data into your environment. As batch windows became longer and longer in the data warehouse world and business users clamored for increasingly up-to-date information, practitioners began shifting from conventional data ETL (Extract, Transform, Load) to lower latency streaming and micro-batch. This trend was extended in the big data universe with tools like Kafka, a streaming message bus, and with Spring and Sqoop to accelerate data ingest. In the big data world, you might also want to ingest unstructured data sets as well, introducing new tools like Flume. Finally, you may want to trigger complex events based on this data stream and you might do so via Spark, Gemfire, or other in-memory grids. And just to make it more complex, you will likely use several of these tools in combination depending on your data feed needs. Keep in mind that in the world of ELT (Extract, Load, Transform) (note that the order differs from E-T-L), most of these data movements are data dumps. At this point, you have simply collected lots of raw data. It’s now time to make sense of it.
  2. Next, it is useful to tag files that you have ingested. What kind of file is this? What would be useful to know about it so that I could search for it later? Zaloni Bedrock is an example of a tool to apply metadata tags to the files, which is useful for both structured and unstructured data sets.
  3. We mentioned above that one of the key requirements of our data lake is having control over who can have access to specific data sources. Generally speaking, the data loaded in steps 1 and 2 is what we call “Bronze” data, meaning that it is good enough for the business process that created it. Data in these sets will likely be sensitive and your security should reflect it. However, we need to determine rules for how the data should be modified, obfuscated, or deleted in order to make it consumable for broader audience, or what we might call “Silver” status. You need to create business rules to manage data (e.g. birthdays should be masked and social security numbers should be stored as only the last 4). Collibra is an example of a tool for this rules definition and management. It allows data rules to be set up based on logical business entities by business people rather than technologists.
  4. For those people who are familiar with governance concepts, you will recognize the difference between a policy and a control. A policy is like a speed limit sign along the highway. The control is the police officer that pulls you over if you are driving over that speed limit. Data works the same way. While Collibra establishes the policy, you need to create a method for enforcing that policy. To do this, you need to find the logical entities buried in the data (i.e. “oh look, I found a social security number!”). Examples of such products include Global IDs for scanning structured data sets with the operational systems and Waterline for scanning data inside of Hadoop.
  5. Once you have found the data that you want, you want to implement the rules. For this, there is an open source tool called Atlas that contains an orchestration capability called Falcon that helps implement the rules.
    1. Apache Atlas is a scalable and extensible set of core foundational governance services that enables enterprises to effectively and efficiently meet their compliance requirements within Hadoop and allows integration with the complete enterprise data ecosystem.
    2. Apache Falcon is a data governance engine that defines, schedules, and monitors data management policies. Falcon allows Hadoop administrators to centrally define their data pipelines, and then Falcon uses those definitions to auto-generate workflows in Apache Oozie
  6. Now that the data is loaded, you will want to enforce security through your LDAP capability or possibly through Kerberos. There are also tools like Blue Talon that simplify the ability to authorize, provision, protect, enforce and audit data security policies across your data lake.
  7. Finally, audit controls are critical. Cloudera introduced Navigator specifically to allow simple transparency to data history and lineage. Hortonworks will rely on Atlas to provide this capability.

Data that has gone through the above processes creates a view and accessibility of the data that can be made available to a wide set of users – both business analysts and data science teams.

When you build a house, the vast majority of the creative work is in the features and curbside appeal. That’s the fun part. But without the underlying plumbing, the house would quickly degrade into a money pit.

Consider the metaphor of a retail store: stocking the shelves vs. purchasing goods. When you go to the store, you don’t care about how the goods got there, but the rules for accessing the goods are everywhere. Cigarettes are behind the front desk. Pharmaceuticals must be dispensed with a prescription. Razor blades are under lock and key (for some strange reason). There are policies and enforcements on stocking the shelves so that the shopping experience is clear and easy.

To successfully operationalize the data lake, organizations need to address all of the plumbing requirements outlined in this blog that enable the business users and data science teams to have confidence in the wealth of data that the organization is amassing. The data lake plumbing processes may not be very glamorous, but without them, you’ll end up with a stinky data dump instead of a glorious data lake.


  1. A “silver bullet” is a simple and seemingly magical solution to a complicated problem.
  2. While I mention several tools, this blog is not meant to be an endorsement of these tools nor is this intended to be a comprehensive list of such tools. However, many of these tools are the same tools that we use in our data lake implementations at EMC.

Data Lake Plumbers: Operationalizing the Data Lake
Bill Schmarzo

More Stories By William Schmarzo

Bill Schmarzo, author of “Big Data: Understanding How Data Powers Big Business” and “Big Data MBA: Driving Business Strategies with Data Science”, is responsible for setting strategy and defining the Big Data service offerings for Dell EMC’s Big Data Practice.

As a CTO within Dell EMC’s 2,000+ person consulting organization, he works with organizations to identify where and how to start their big data journeys. He’s written white papers, is an avid blogger and is a frequent speaker on the use of Big Data and data science to power an organization’s key business initiatives. He is a University of San Francisco School of Management (SOM) Executive Fellow where he teaches the “Big Data MBA” course. Bill also just completed a research paper on “Determining The Economic Value of Data”. Onalytica recently ranked Bill as #4 Big Data Influencer worldwide.

Bill has over three decades of experience in data warehousing, BI and analytics. Bill authored the Vision Workshop methodology that links an organization’s strategic business initiatives with their supporting data and analytic requirements. Bill serves on the City of San Jose’s Technology Innovation Board, and on the faculties of The Data Warehouse Institute and Strata.

Previously, Bill was vice president of Analytics at Yahoo where he was responsible for the development of Yahoo’s Advertiser and Website analytics products, including the delivery of “actionable insights” through a holistic user experience. Before that, Bill oversaw the Analytic Applications business unit at Business Objects, including the development, marketing and sales of their industry-defining analytic applications.

Bill holds a Masters Business Administration from University of Iowa and a Bachelor of Science degree in Mathematics, Computer Science and Business Administration from Coe College.

@ThingsExpo Stories
Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settlement products to hedge funds and investment banks. After, he co-founded a revenue cycle management company where he learned about Bitcoin and eventually Ethereal. Andrew's role at ConsenSys Enterprise is a mul...
The best way to leverage your Cloud Expo presence as a sponsor and exhibitor is to plan your news announcements around our events. The press covering Cloud Expo and @ThingsExpo will have access to these releases and will amplify your news announcements. More than two dozen Cloud companies either set deals at our shows or have announced their mergers and acquisitions at Cloud Expo. Product announcements during our show provide your company with the most reach through our targeted audiences.
DevOpsSummit New York 2018, colocated with CloudEXPO | DXWorldEXPO New York 2018 will be held November 11-13, 2018, in New York City. Digital Transformation (DX) is a major focus with the introduction of DXWorldEXPO within the program. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive over the long term. A total of 88% of Fortune 500 companies from a generation ago are now out of bus...
With 10 simultaneous tracks, keynotes, general sessions and targeted breakout classes, @CloudEXPO and DXWorldEXPO are two of the most important technology events of the year. Since its launch over eight years ago, @CloudEXPO and DXWorldEXPO have presented a rock star faculty as well as showcased hundreds of sponsors and exhibitors! In this blog post, we provide 7 tips on how, as part of our world-class faculty, you can deliver one of the most popular sessions at our events. But before reading...
DXWordEXPO New York 2018, colocated with CloudEXPO New York 2018 will be held November 11-13, 2018, in New York City and will bring together Cloud Computing, FinTech and Blockchain, Digital Transformation, Big Data, Internet of Things, DevOps, AI, Machine Learning and WebRTC to one location.
DXWorldEXPO LLC announced today that "Miami Blockchain Event by FinTechEXPO" has announced that its Call for Papers is now open. The two-day event will present 20 top Blockchain experts. All speaking inquiries which covers the following information can be submitted by email to [email protected] Financial enterprises in New York City, London, Singapore, and other world financial capitals are embracing a new generation of smart, automated FinTech that eliminates many cumbersome, slow, and expe...
DXWorldEXPO | CloudEXPO are the world's most influential, independent events where Cloud Computing was coined and where technology buyers and vendors meet to experience and discuss the big picture of Digital Transformation and all of the strategies, tactics, and tools they need to realize their goals. Sponsors of DXWorldEXPO | CloudEXPO benefit from unmatched branding, profile building and lead generation opportunities.
DXWorldEXPO LLC announced today that ICOHOLDER named "Media Sponsor" of Miami Blockchain Event by FinTechEXPO. ICOHOLDER give you detailed information and help the community to invest in the trusty projects. Miami Blockchain Event by FinTechEXPO has opened its Call for Papers. The two-day event will present 20 top Blockchain experts. All speaking inquiries which covers the following information can be submitted by email to [email protected] Miami Blockchain Event by FinTechEXPO also offers s...
With tough new regulations coming to Europe on data privacy in May 2018, Calligo will explain why in reality the effect is global and transforms how you consider critical data. EU GDPR fundamentally rewrites the rules for cloud, Big Data and IoT. In his session at 21st Cloud Expo, Adam Ryan, Vice President and General Manager EMEA at Calligo, examined the regulations and provided insight on how it affects technology, challenges the established rules and will usher in new levels of diligence arou...
Dion Hinchcliffe is an internationally recognized digital expert, bestselling book author, frequent keynote speaker, analyst, futurist, and transformation expert based in Washington, DC. He is currently Chief Strategy Officer at the industry-leading digital strategy and online community solutions firm, 7Summits.
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to ...
Cloud-enabled transformation has evolved from cost saving measure to business innovation strategy -- one that combines the cloud with cognitive capabilities to drive market disruption. Learn how you can achieve the insight and agility you need to gain a competitive advantage. Industry-acclaimed CTO and cloud expert, Shankar Kalyana presents. Only the most exceptional IBMers are appointed with the rare distinction of IBM Fellow, the highest technical honor in the company. Shankar has also receive...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
The standardization of container runtimes and images has sparked the creation of an almost overwhelming number of new open source projects that build on and otherwise work with these specifications. Of course, there's Kubernetes, which orchestrates and manages collections of containers. It was one of the first and best-known examples of projects that make containers truly useful for production use. However, more recently, the container ecosystem has truly exploded. A service mesh like Istio addr...
Predicting the future has never been more challenging - not because of the lack of data but because of the flood of ungoverned and risk laden information. Microsoft states that 2.5 exabytes of data are created every day. Expectations and reliance on data are being pushed to the limits, as demands around hybrid options continue to grow.
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
Business professionals no longer wonder if they'll migrate to the cloud; it's now a matter of when. The cloud environment has proved to be a major force in transitioning to an agile business model that enables quick decisions and fast implementation that solidify customer relationships. And when the cloud is combined with the power of cognitive computing, it drives innovation and transformation that achieves astounding competitive advantage.
As IoT continues to increase momentum, so does the associated risk. Secure Device Lifecycle Management (DLM) is ranked as one of the most important technology areas of IoT. Driving this trend is the realization that secure support for IoT devices provides companies the ability to deliver high-quality, reliable, secure offerings faster, create new revenue streams, and reduce support costs, all while building a competitive advantage in their markets. In this session, we will use customer use cases...
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
Cloud Expo | DXWorld Expo have announced the conference tracks for Cloud Expo 2018. Cloud Expo will be held June 5-7, 2018, at the Javits Center in New York City, and November 6-8, 2018, at the Santa Clara Convention Center, Santa Clara, CA. Digital Transformation (DX) is a major focus with the introduction of DX Expo within the program. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive ov...