Welcome!

Recurring Revenue Authors: Pat Romanski, Liz McMillan, Yeshim Deniz, Carmen Gonzalez, Elizabeth White

Related Topics: @ThingsExpo, Java IoT, Agile Computing, Wearables, @CloudExpo, @BigDataExpo

@ThingsExpo: Article

[video] @CHarrold303 Is Building a Personal #IoT | @ThingsExpo #M2M #AI

The birth of an IoT DIY project from beginning to finish

About 6 months ago I had this "brilliant" idea that I would like to monitor the water level of my plants living on my balcony. The goal was to keep them healthy and happy (and producing vegetables for me in my urban garden). After looking for a commercial solution to aid me in this project, I discovered that there wasn't anything out there that would do what I need. The primary reason why nothing worked for me was that none of the products out there are capable of monitoring multiple plants at once, leaving me with the need to buy multiple units. At 10-15 containers for plants, this was immediately recognized as unrealistic, due to their high individual cost. Being the enterprising person I am, my immediate thought was, "I will just build one! How hard can it be?"

Six months have passed and I am starting to grasp the reality of it. It isn't hard, in the sense that I am not treading lots of new ground and making a lot of things up from scratch. It is definitely not simple either. I have a working prototype of a single instance of a soil moisture sensor, temperature and humidity sensor, and a light level sensor in a "sensor pack." Emphasis being on "prototype" and "single." It has taken me 6 months of time to buy, assemble, trial, error, and otherwise jigger around with bits and wires to get a working prototype that is extremely fragile and not at all ready for commercial use. Now to be fair, I have a full-ime job so I didn't do this all day every day; however, I did spend serious late night hours on it, and it was not a trivial time or monetary investment (still cheaper than the commercial option though). The net outcome is that at achieving phase 1 completion, I have a working prototype. I can monitor a single plant, indoors, relatively close to a power outlet, and with a bunch of wires and bits and bobs all over that wiggle loose if you look at them too hard; and that's kind of the big problem. Not all IoT projects are supposed to be indoors with "plug-in" power supplies and exposed wires; it just isn't feasible. The reality of "build it yourself" IoT is that unless you already like technology and making things, and don't mind that charming "cobbled together industrial mess" aesthetic, it is incredibly unlikely you would ever really get into it. If you do, it is like running a race where the finish line moves every time you reach it. I intend to continue on, but if you are considering your own IoT initiative you should know what you are signing up for up front!

Next Steps
To realize the vision for my original ideas on this project, I need things that are well outside my comfort zone and skill level. For example, I need to build something that is waterproof, contains my sensor package and a functional computer, and is more or less untouched by the changing weather outside. At that point, breadboards and wires won't cut it if I want to actually use this system outdoors. I need to effectively build the infrastructure for my own infrastructure project. A short list of what I need to do next looks like this:

  • First and most simple, I need to make or find something that can be a good housing for my package of sensors that allows them to work outdoors while protecting them at the same time. It has to be waterproof, with a clear spot for the light sensor and needs some sort of grate for the temperature and humidity probe to work right. The housing should be able to fit in some sort of processor as well (I am thinking of a Pi 0 for size reasons, or Arduino for power reasons) to run the code, so I can collect and deliver sensor readings to the central hub. Then I have to have one of these per container on my balcony (right now that would be 10). So while I can one-off make all of them, Ideally I want to find something more scalable and affordable since I am thinking about the "production ready" aspects of the project. *(See footnotes)
  • It has to be able to run on a battery and/ (preferably) solar power - this is VERY non-trivial. Everything in an IoT devices consumes power. Everything, including the wires and connections themselves have an impact on the amount of power needed to run the device. You can do lots of things, like "sleep modes" and power saving tricks and etc..., but the Raspberry Pi (by itself, no sensors) needs 5V just to boot up. I have seen a number of "Pi on Battery" projects and a Pi on solar or two so it can be done, but again, this is a pretty big part of "consumerization" - Solar is a nice way to go since I can somewhat assume light (plants), and changing batteries is both annoying and anti-environmental so solar is a good balance.****
  • I will have to find a source to build custom PCB boards** (that's the green boards with the wires and connections embedded in them) so that I can solder my sensors in place to keep them from moving around. It will have to fit into the above housing, and provide all the connections I need for power, the CPU, and the sensors themselves.
  • I really want to find some sort of Bluetooth LE or other wireless means to connect the sensor packs into a central collection system.*** This is yet another process I have never done before and will have to learn about in order to work with the wireless transmission method I end up choosing.
  • In order to really be considered a success, and production ready, I will need to duplicate my sensor pack 10 times - one for each plant. To be fair I could consolidate and JUST do the soil moisture at each plant, and take temp, humidity and light levels at a central spot, but I am thinking of "consumerization" of the finished product. What if the end user has a big yard or multiple "eco systems" such as deep shade, a greenhouse or different plant types? There are too many variations, even from pot to pot on my small patio, that having the ability to do temperature and humidity alongside the soil moisture monitoring is ultimately the most useful for a consumerized product.
  • I will have to get a soldering iron and spend some time practicing in order to solder well. This isn't as trivial as it sounds. Soldering mistakes on my custom-made PCB board could get expensive in a hurry, and the connections have to be good or my device will fail in the field and that means my consumer has to deal with a bad device. This can be outsourced of course, and in a full commercial project can be handled in manufacturing, but that is a cost that I have no ability to bear in my DIY project scope.

Ultimately the end game for any device is that I will want to operationalize my prototype into something more consumer friendly for someone with potentially limited skill and technical know-how. The benefit to me for my little project is that the end product becomes something I don't have to babysit every day, but something I can turn on and forget until it reminds me it is there.

Potential
Considering all the needs and desires for my own little "baby" IoT project, I realized I will have to perform electrical engineering, industrial and interface design, consumer focus testing, and assembly and testing.

No big deal, right?

At this point it hit me why the whole concept of the IoT is both amazing in its potential to be something incredible and something incredibly destructive. You'll notice that I footnoted a couple of points above, relating to things I genuinely don't know how to do (yet). There are resources out there for a lot of those things, maybe even all of it. The best part about our modern world is that you are very rarely the first to experiment with something. There is usually a life line out there, unless you are performing bleeding edge innovation. This is why there is so much potential in IoT. You are taking work done by others and enhancing, improving, or simply modifying it to match your need. This is the heart of the open source movement and IoT is no different. Nothing really starts at "zero" and you don't have to figure out every single detail. I didn't have to build the sensors themselves. I certainly didn't design the Raspberry Pi, or create a language to use to talk to the sensors. I am using things already discovered in a new(ish) way for my specific project. That is an amazing thing to be able to do, and more importantly it means that innovation in IoT can happen sometimes frighteningly fast.

Destruction
This ability to innovate at high speed also means that there is an incredibly destructive force in IoT. We saw some of it in the Fall with the attacks from the Mirai botnet being used to take down Dyn DNS hosting and causing major Internet issues. If you attach something to the internet you create the risk that it can be used maliciously. My own IoT project is definitely not hardened; I have all default passwords on everything, because it is faster and easier when I am constantly changing code and troubleshooting if I don't have to type in a 14 character password with symbols and numbers. I recognize the risk, but I am not connecting outside my own LAN so the risk is contained. A commercial product that needs to relay information off a central server or website is just a bullseye in the ether for hackers looking for things to compromise to get at data.

As I went through this project, it was easy for me to see why defaults work their way into commercial IoT devices so easily; no one wants to have to hassle with multi-factor security or cumbersome passwords during the prototype phase when things are constantly changing. Unfortunately I know the demands to get things "out the door" all too well and in that rush is when defaults, bad code, and "it's working, ship it" intersect is when bad security happens. This is where consumer design and security clash, and IoT is one of those rare places that we are collectively going to need to get right, because the stakes are getting really high. In my case, my plants might not get watered if my rig is compromised. No big deal for me, I will hand water them again, but if it is my car, my fire and smoke alarm, my medical equipment, the controls for my elevator, or any number of other things that are connected to the Internet, we could be talking about serious or even life threatening risks.

Outlook
I am generally pro IoT and innovation, and I do not want this blog to read like a contrarian piece since that's not how I feel about IoT. Instead I meant it to illustrate two things; the first one is that undeniably IoT is important, becoming more and more a part of our daily lives. With that great power comes an even greater responsibility to ensure security and safety is a part of the design, not an afterthought.

The second is that IoT is not a simple exercise in "connecting things together" and linking it to the Internet. The amount of knowledge and skills required to make a true commercial IoT device functional and successful is a legitimate challenge. The barriers to entry are high, even for someone like me that enjoys learning and discovering and has decent technical background.

Can we accelerate the ability of IoT technologies, but keep it engaging and approachable without making them so simplistic and unsafe, that we create a new army of devices that wield increasing power over our daily lives? I truly believe we can, and I hope that in a small way my own IoT project is one of many small bridges leading to plan to figuring out the how of the technology, so that others will take my work and make it that much better.

Watch out for the next part of this blog Do It Yourself IoT blog series. As we go forward I will keep updating and sharing my learnings as I move into phase 2 and try to make my vision come to life. The video for the final prototype is over on YouTube, here.

Footnotes:

* - I toyed with "MacGuyvering" the housing out of things like outdoor electrical boxes and such, but then I also started investigating things like 3D printing options which could allow me to print a case that fits my package of sensors and connections perfectly because it is built for it. If I wanted to get really serious about it and sell them, I could invest in my own printer; for 4-500$ you can get a simple but reliable 3d printer that would do what I needed. As I was researching I also found options for "on demand" 3d printing services too. A great resource list is here: https://all3dp.com/best-online-3d-printing-service/

** - I have zero experience designing PCB boards. I have some EE friends, but I want to learn on my own for the full experience. In doing some research I found a number of places that will "print" you a PCB that you design, and a couple even have an online tool for designing the PCB itself. I am using EasyEDA (https://easyeda.com/) which has a nice library of user-submitted designs and "templates" that help a total n00b like me get started. (I could, were I so inclined, go so far as to print my own Raspberry Pi motherboard in effect and truly slim down my design, but that seems like a LOT of extra work for a "fun" project, but it could be done - just not by me!)

*** - It turns out that while making things talk over distance is pretty standard tech, miniaturizing it and making it work the way you want is not. I have started delving into the things available for this and found a few options. I have NOT played with any of them yet, but this one I found on Amazon might do the trick: https://www.amazon.com/Arduino-NRF24L01-2-4GHz-Wireless-Transceiver

I *could* assume the end consumer has a usable wifi network, but again, if we are talking about potential uses outside in a big yard or garden, their house-based wifi may not cut it. Also I want to be conscious of security so having my own send and receive function that does not rely on something external means that I don't expose anything outside of the devices themselves.

**** Something that keeps coming up for this project is that an Arduino is likely to be a much better option for running the sensors and sending the information to the central station (which could be the Raspberry Pi). The Arduino has a significantly lower power draw (A solar panel to run a single RPi for 24 hours a day would cost upwards of 150$ - not realistic for a distributed monitoring system!) and it can do the analog sensor readings natively which removes cost from the sensor package in the form of the MCP3008 chip I need to do analog conversions for the digital-only RPi. It is definitely something I will have to explore as I go into the next phase of the project. A very nice writeup on running a solar Raspberry Pi is here: http://www.voltaicsystems.com/blog/powering-a-raspberry-pi-from-solar-power/

The same site has a number of other write ups and important power consumption info for solar-based projects.

-- Check out the companion video to this blog post: On YouTube, here, along with the rest of the video series for this project. --

More Stories By Christopher Harrold

As an Agent of IT Transformation, I have over 20 years experience in the field. Started off as the IT Ops guy and followed the trends of the DevOps movement wherever I went. I want to shake up accepted ways of thinking and develop new models and designs that push the boundaries of technology and of the accepted status quo. There is no greater reward for me than seeing something that was once dismissed as "impossible" become the new normal, and I have been richly rewarded throughout my career with this result. In my last role as CTO at EMC Corporation, I was working tirelessly with a small group of engineers and product managers to build a market leading, innovative platform for data analytics. Combining best of breed storage, analytics and visualization solutions that enables the Data as a Service model for enterprise and mid sized companies globally.

@ThingsExpo Stories
Real IoT production deployments running at scale are collecting sensor data from hundreds / thousands / millions of devices. The goal is to take business-critical actions on the real-time data and find insights from stored datasets. In his session at @ThingsExpo, John Walicki, Watson IoT Developer Advocate at IBM Cloud, will provide a fast-paced developer journey that follows the IoT sensor data from generation, to edge gateway, to edge analytics, to encryption, to the IBM Bluemix cloud, to Wa...
SYS-CON Events announced today that Massive Networks, that helps your business operate seamlessly with fast, reliable, and secure internet and network solutions, has been named "Exhibitor" of SYS-CON's 21st International Cloud Expo ®, which will take place on Oct 31 - Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. As a premier telecommunications provider, Massive Networks is headquartered out of Louisville, Colorado. With years of experience under their belt, their team of...
SYS-CON Events announced today that Nihon Micron will exhibit at the Japan External Trade Organization (JETRO) Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Nihon Micron Co., Ltd. strives for technological innovation to establish high-density, high-precision processing technology for providing printed circuit board and metal mount RFID tags used for communication devices. For more inf...
SYS-CON Events announced today that mruby Forum will exhibit at the Japan External Trade Organization (JETRO) Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. mruby is the lightweight implementation of the Ruby language. We introduce mruby and the mruby IoT framework that enhances development productivity. For more information, visit http://forum.mruby.org/.
In his session at @ThingsExpo, Greg Gorman is the Director, IoT Developer Ecosystem, Watson IoT, will provide a short tutorial on Node-RED, a Node.js-based programming tool for wiring together hardware devices, APIs and online services in new and interesting ways. It provides a browser-based editor that makes it easy to wire together flows using a wide range of nodes in the palette that can be deployed to its runtime in a single-click. There is a large library of contributed nodes that help so...
SYS-CON Events announced today that Ryobi Systems will exhibit at the Japan External Trade Organization (JETRO) Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Ryobi Systems Co., Ltd., as an information service company, specialized in business support for local governments and medical industry. We are challenging to achive the precision farming with AI. For more information, visit http:...
SYS-CON Events announced today that SIGMA Corporation will exhibit at the Japan External Trade Organization (JETRO) Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. uLaser flow inspection device from the Japanese top share to Global Standard! Then, make the best use of data to flip to next page. For more information, visit http://www.sigma-k.co.jp/en/.
SYS-CON Events announced today that Daiya Industry will exhibit at the Japan External Trade Organization (JETRO) Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Daiya Industry specializes in orthotic support systems and assistive devices with pneumatic artificial muscles in order to contribute to an extended healthy life expectancy. For more information, please visit https://www.daiyak...
SYS-CON Events announced today that B2Cloud will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. B2Cloud specializes in IoT devices for preventive and predictive maintenance in any kind of equipment retrieving data like Energy consumption, working time, temperature, humidity, pressure, etc.
SYS-CON Events announced today that NetApp has been named “Bronze Sponsor” of SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. NetApp is the data authority for hybrid cloud. NetApp provides a full range of hybrid cloud data services that simplify management of applications and data across cloud and on-premises environments to accelerate digital transformation. Together with their partners, NetApp em...
What is the best strategy for selecting the right offshore company for your business? In his session at 21st Cloud Expo, Alan Winters, U.S. Head of Business Development at MobiDev, will discuss the things to look for - positive and negative - in evaluating your options. He will also discuss how to maximize productivity with your offshore developers. Before you start your search, clearly understand your business needs and how that impacts software choices.
SYS-CON Events announced today that Interface Corporation will exhibit at the Japan External Trade Organization (JETRO) Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Interface Corporation is a company developing, manufacturing and marketing high quality and wide variety of industrial computers and interface modules such as PCIs and PCI express. For more information, visit http://www.i...
SYS-CON Events announced today that Keisoku Research Consultant Co. will exhibit at the Japan External Trade Organization (JETRO) Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Keisoku Research Consultant, Co. offers research and consulting in a wide range of civil engineering-related fields from information construction to preservation of cultural properties. For more information, vi...
SYS-CON Events announced today that MIRAI Inc. will exhibit at the Japan External Trade Organization (JETRO) Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. MIRAI Inc. are IT consultants from the public sector whose mission is to solve social issues by technology and innovation and to create a meaningful future for people.
SYS-CON Events announced today that Fusic will exhibit at the Japan External Trade Organization (JETRO) Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Fusic Co. provides mocks as virtual IoT devices. You can customize mocks, and get any amount of data at any time in your test. For more information, visit https://fusic.co.jp/english/.
SYS-CON Events announced today that N3N will exhibit at SYS-CON's @ThingsExpo, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. N3N’s solutions increase the effectiveness of operations and control centers, increase the value of IoT investments, and facilitate real-time operational decision making. N3N enables operations teams with a four dimensional digital “big board” that consolidates real-time live video feeds alongside IoT sensor data a...
Mobile device usage has increased exponentially during the past several years, as consumers rely on handhelds for everything from news and weather to banking and purchases. What can we expect in the next few years? The way in which we interact with our devices will fundamentally change, as businesses leverage Artificial Intelligence. We already see this taking shape as businesses leverage AI for cost savings and customer responsiveness. This trend will continue, as AI is used for more sophistica...
SYS-CON Events announced today that Enroute Lab will exhibit at the Japan External Trade Organization (JETRO) Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Enroute Lab is an industrial design, research and development company of unmanned robotic vehicle system. For more information, please visit http://elab.co.jp/.
SYS-CON Events announced today that Mobile Create USA will exhibit at the Japan External Trade Organization (JETRO) Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Mobile Create USA Inc. is an MVNO-based business model that uses portable communication devices and cellular-based infrastructure in the development, sales, operation and mobile communications systems incorporating GPS capabi...
There is huge complexity in implementing a successful digital business that requires efficient on-premise and cloud back-end infrastructure, IT and Internet of Things (IoT) data, analytics, Machine Learning, Artificial Intelligence (AI) and Digital Applications. In the data center alone, there are physical and virtual infrastructures, multiple operating systems, multiple applications and new and emerging business and technological paradigms such as cloud computing and XaaS. And then there are pe...